Package: AcousticNDLCodeR (via r-universe)

August 22, 2024

Type Package

Title Coding Sound Files for Use with NDL

Version 1.0.2 **Date** 2018-07-06

Maintainer Denis Arnold <arnold@ids-mannheim.de>

Depends R (>= 3.0.0)

Description Make acoustic cues to use with the R packages 'ndl' or 'ndl2'. The package implements functions used in the PLoS ONE paper: Denis Arnold, Fabian Tomaschek, Konstantin Sering, Florence Lopez, and R. Harald Baayen (2017). Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PLoS ONE 12(4):e0174623 <doi:10.1371/journal.pone.0174623> More details can be found in the paper and the supplement. 'ndl' is available on CRAN. 'ndl2' is available by request from <konstantin.sering@uni-tuebingen.de>.

Imports tuneR, zoo, seewave, parallel

License GPL (>= 2)

LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Author Denis Arnold [aut, dtc, cre], Elnaz Shafaei Bajestan [ctb]

Date/Publication 2017-04-11 14:26:38 UTC

Repository https://denis-arnold.r-universe.dev

RemoteUrl https://github.com/denis-arnold/acousticndlcoder

RemoteRef HEAD

RemoteSha 488f9a6300b23cb0aa93bbe51eeee9d764a982fd

2 AcousticNDLCodeR

Contents

	AcousticNDLCodeR	2
	CODE	3
	CorpusCoder	4
	getBoundary	5
	makeCues	6
	readESPSAnnotation	7
	readTextGridFast	7
	readTextGridRobust	8
	readWavesurfer	9
	word_classification_data	10
Index		11
Acous	sticNDLCodeR	

Description

Package to make acoustic cues to use with ndl or ndl2.

Details

The packages main function is makeCues. readTextGridFast, readTextGridRobust, readESPSAnnotation and readWavesurfer are helper functions that read the corresponding annotation files and return a data.frame. CorpusCoder codes a whole corpus given a vector with the path to and names of wave files and a vector for the annotation files. word_classification_data provides data from Arnold et al 2017 https://doi.org/10.1371/journal.pone.0174623

Author(s)

Denis Arnold

References

Reference to to paper in accepted form.

Examples

```
## Not run:
# assuming the corpus contains wave files and praat textgrids
setwd(~/Data/MyCorpus) # assuming everything is in one place
#assuming you have one wav for each annotation
Waves=list.files(pattern="*.wav",recursive=T)
Annotations=list.files(pattern="*.TextGrids",recursive=T) # see above
```

CODE 3

```
# Lets assume the annotation is in UTF-8 and you want everything from a tier called words
    # Lets assume that you want to dismiss everything in <|>
    # Lets assume that have 4 cores available
    # Lets assume that you want the defaut settings for the parameters

Data=CorpusCoderCorpusCoder(Waves, Annotations, AnnotationType = "TextGrid",
    TierName = "words", Dismiss = "<|>", Encoding, Fast = F, Cores = 4,
    IntensitySteps = 5, Smooth = 800)
## End(Not run)
```

Helper function for makeCues

Description

CODE

Helper function for makeCues

Usage

CODE(SPEC, num)

Arguments

SPEC Spectrum representation made in makeCues()

num Number of the part

Value

A string containing the coding. Each band is seperated by "_".

Author(s)

Denis Arnold

4 CorpusCoder

CorpusCoder	Codes a corpus for use with NDL with vector of wavefile names and a vector of TextGrid names provided

Description

Codes a corpus for use with NDL with vector of wavefile names and a vector of TextGrid names provided

Usage

```
CorpusCoder(Waves, Annotations, AnnotationType = c("TextGrid", "ESPS"),
  TierName = NULL, Dismiss = NULL, Encoding, Fast = F, Cores = 1,
  IntensitySteps, Smooth)
```

Arguments

Waves	Vector with names (and full path to if not in wd) of the wave files.
Annotations	Vector with names (and full path to if not in wd) of the TextGrid files.
AnnotationType	Type of annotation files. Suported formats are praat TextGrids (set to "TextGrid") and ESPS/Wavesurfer (set to "ESPS") files.
TierName	Name of the tier in the TextGrid to be used.
Dismiss	Regular expression for Outcomes that should be removed. Uses grep. E.g. "< >" would remove <noise>,<xxx>, etc. Default is NULL.</xxx></noise>
Encoding	Encoding of the annotation file. It is assumed, that all annotation files have the same encoding.
Fast	Switches between a fast and a robust TextGrid parser. For Fast no "\n" or "\t" may be in the transcription. Default is FALSE.
Cores	Number of cores that the function may use. Default is 1.
IntensitySteps	Number of steps that the intensity gets compressed to. Default is 5
Smooth	A parameter for using the kernel smooth function provied by the package zoo.

Value

A data.frame with \$Cues and \$Outcomes for use with ndl or ndl2.

Author(s)

Denis Arnold

getBoundary 5

Examples

```
## Not run:
# assuming the corpus contains wave files and praat textgrids

setwd(~/Data/MyCorpus) # assuming everything is in one place

#assuming you have one wav for each annotation

Waves=list.files(pattern="*.wav",recursive=T)
    Annotations=list.files(pattern="*.TextGrids",recursive=T) # see above

# Lets assume the annotation is in UTF-8 and you want everything from a tier called words
    # Lets assume tha you want to dismiss everything in <|>
    # Lets assume that have 4 cores available
    # Lets assume that you want the defaut settings for the parameters

Data=CorpusCoderCorpusCoder(Waves, Annotations, AnnotationType = "TextGrid",
    TierName = "words", Dismiss = "<|>", Encoding, Fast = F, Cores = 4,
    IntensitySteps = 5, Smooth = 800)

## End(Not run)
```

getBoundary

Helper function for makeCues that splits the signal based on the envelope of the signal

Description

Helper function for makeCues that splits the signal based on the envelope of the signal

Usage

```
getBoundary(Wave, smooth = 800)
```

Arguments

Wave object (see tuneR)

smooth A parameter for using the kernel smooth function provide by the package zoo.

Value

A vector with the sample numbers of the boundaries.

Author(s)

Denis Arnold

6 makeCues

Examples

```
## Not run:
library(tuneR)
Wave=readWave("MyWaveFile.wav")
Boundaries=getBoundary(Wave,800)
## End(Not run)
```

makeCues

Creates a string with the cues for each frequency band and segment seperated by "_"

Description

Creates a string with the cues for each frequency band and segment seperated by "_"

Usage

```
makeCues(WAVE, IntensitySteps = 5, Smooth = 800)
```

Arguments

WAVE A Wave object (see tuneR). Currently it is implemented for use with 16kHz

sampling rate.

IntensitySteps Number of steps that the intensity gets compressed to. Default is 5.

Smooth A parameter for using the kernel smooth function provide by the package zoo.

Value

A string containing the coding. Each band and part is seperated by "_"

Author(s)

Denis Arnold

Examples

```
## Not run:

library(tuneR)
library(seewave)
Wave=readWave("MyWaveFile.wav")
if(Wave@samp.rate!=16000){
Wave=resamp(Wave,f=Wave@samp.rate,g=16000,output="Wave")
}
Cues=makeCues(Wave,IntensitySteps=5,Smooth=800)

## End(Not run)
```

readESPSAnnotation 7

Description

Reads a ESPS/Old Wavesurfer style annotation file and returns a data frame with times and lables

Usage

```
readESPSAnnotation(File, Encoding)
```

Arguments

File Name (with full path, if not in wd) of the annotation file

Encoding Encoding of the annotation file. Typically encodings are "ACSII", "UTF-8" or

"UTF-16"

Value

A data.frame with \$Output for the lable \$start and \$end time of the lable.

Author(s)

Denis Arnold

Examples

```
## Not run:
    # Assume that NameOfAnnotation is encoded in "UTF-8"
    Data=readESPSAnnotation("NameOfTextGrid","UTF-8")
## End(Not run)
```

readTextGridFast

Reads a TextGrid made with praat and returns a list with a vector of all tier names and a data.frame for each tier.

Description

Reads a TextGrid made with praat and returns a list with a vector of all tier names and a data.frame for each tier.

Usage

```
readTextGridFast(File, Encoding)
```

8 readTextGridRobust

Arguments

File Name (with full path, if not in wd) of the TextGrid

Encoding Encoding of the TextGrid. Typically encodings are "ACSII", "UTF-8" or "UTF-

16"

Details

This method has sometimes problems with certain sequences like " \n " in the annotation file. If the method fails, try readTextGridRobust()

Value

A list containing a vectors with the names and data.frames for each tier in the TextGrid.

Author(s)

Denis Arnold

Examples

```
## Not run:
    # Assume that NameOfTextGrid is encoded in "UTF-8"
    Data=readTextGridFast("NameOfTextGrid","UTF-8")
## End(Not run)
```

readTextGridRobust

Reads a TextGrid made with praat and returns a list with a vector of all tier names and a data.frame for each tier

Description

Reads a TextGrid made with praat and returns a list with a vector of all tier names and a data.frame for each tier

Usage

```
readTextGridRobust(File, Encoding)
```

Arguments

File Name (with full path, if not in wd) of the TextGrid

Encoding Encoding of the TextGrid. Typically encodings are "ACSII", "UTF-8" or "UTF-

16"

readWavesurfer 9

Value

A list containing a vectors with the names and data frames for each tier in the TextGrid.

Author(s)

Denis Arnold

Examples

```
## Not run:
    # Assume that NameOfTextGrid is encoded in "UTF-8"
    Data=readTextGridRobust("NameOfTextGrid","UTF-8")
## End(Not run)
```

 ${\tt readWavesurfer}$

Reads a New Wavesurfer style annotation file and returns a data.frame with times and lables

Description

Reads a New Wavesurfer style annotation file and returns a data.frame with times and lables

Usage

```
readWavesurfer(File, Encoding)
```

Arguments

File Name (with full path, if not in wd) of the annotation file

Encoding Encoding of the annotation file. Typically encodings are "ACSII", "UTF-8" or

"UTF-16"

Value

A data.frame with \$Output for the lable \$start and \$end time of the lable.

Author(s)

Denis Arnold

Examples

```
## Not run:
    # Assume that NameOfAnnotation is encoded in "UTF-8"
    Data=readWavesurfer("NameOfTextGrid","UTF-8")
## End(Not run)
```

word_classification_data

Data of PLoS ONE paper

Description

Dataset of a subject and modeling data for an auditory word identification task.

Usage

data(word_classification_data)

Format

Data from the four experiments and model estimates

ExperimentNumber Experiment identifier

PresentationMethod Method of presentation in the experiment: loudspeaker, headphones 3. Trial: Trial number in the experimental list

TrialScaled scaled Trial

Subject anonymized subject identifier

Item word identifier -german umlaute and special character coded as 'ae' 'oe' 'ue' and 'ss'

Activation NDL activation

LogActivation log(activation+epsilon)

L1norm L1-norm (lexicality)

LogL1norm log of L1-norm

RecognitionDecision recognition decision (yes/no)

RecognitionRT latency for recognition decision

LogRecognitionRT log recognition RT

DictationAccuracy dictation accuracy (TRUE: correct word reported, FALSE otherwise) 15. DictationRT: response latency to typing onset

References

Denis Arnold, Fabian Tomaschek, Konstantin Sering, Florence Lopez, and R. Harald Baayen (2017). Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit PLoS ONE 12(4):e0174623. https://doi.org/10.1371/journal.pone.017462

Index